Так вот, я проецирую эти четыре прекрасных уравнения на разные экраны на всех стенах лекционного зала. «Смотрите на них, – говорю я студентам. – Вдыхайте их. Позвольте им проникнуть в ваш мозг. Только раз в жизни вы увидите все четыре уравнения Максвелла так, чтобы оценить их во всей полноте, красоте и тесной взаимосвязи. Больше это никогда не повторится. И вы уже никогда не будете прежними. Вы только что потеряли девственность». Чтобы ознаменовать этот великий день в жизни студентов и отпраздновать интеллектуальную встречу на высшем уровне, я приношу в аудиторию шестьсот нарциссов – по одному для каждого студента.

Студенты часто пишут мне много лет спустя, давно забыв детали уравнений Максвелла, что помнят тот день нарциссов, которыми я отметил их переход к новому способу восприятия мира. С моей точки зрения, это и есть преподавание на самом высоком уровне. Для меня гораздо важнее, что студенты помнят красоту того, что они тогда увидели, чем то, смогут ли они через пару лет точно воспроизвести написанное профессором на доске. Важно не то, что вы рассказываете, а то, как вы это делаете!

Моя цель – заставить студентов полюбить физику и сделать так, чтобы они стали смотреть на мир по-другому – на всю оставшуюся жизнь! Я хочу расширять их кругозор, чтобы побудить их задавать вопросы, которые они никогда не задали бы ранее. Моя задача – разблокировать мир физики таким образом, что он соединился с реальным интересом студентов к окружающему миру. Вот почему я всегда стараюсь показать им лес, а не заставляю лазить вверх и вниз по каждому дереву. То же самое я пытался сделать и для вас в этой книге. И искренне надеюсь, что у меня получилось и вам понравилось наше путешествие в мир физики.

Приложение I

Бедренная кость млекопитающего

Логично было бы предположить, что масса млекопитающего пропорциональна его объему. Сравним, например, щенка с матерым псом в четыре раза большего размера. Предположим, что все линейные размеры взрослой собаки в четыре раза больше размеров щенка: высота и длина тела, длина и толщина лап, объем головы – в общем, все. Если это так, то объем (и, следовательно, масса) взрослой собаки приблизительно в 64 раза больше объема щенка.

Для того чтобы все яснее представить, возьмем параллелепипед со сторонами a, b и c. Его объем будет равен a × b × c. Если увеличить все его стороны в четыре раза, его объем составит 4a × 4b × 4с, то есть 64abc. Выражаясь более математическим языком, можно сказать, что объем (и, следовательно, масса) млекопитающего пропорционален его размеру в кубе. Если большая собака в четыре раза больше щенка, то ее объем должен быть в четыре в кубе (4³) раз больше, то есть в 64 раза. Таким образом, обозначив длину бедренной кости l, при сравнении млекопитающих разного размера получаем, что их масса должна быть примерно пропорциональна l в кубе (l³).

Ну хорошо, с массой разобрались. Далее, прочность бедренной кости млекопитающего, поддерживающей весь его вес, должна быть пропорциональна ее толщине, не так ли? Более толстая кость способна поддерживать больший вес – это интуитивный вывод. Если перевести данную идею на язык математики, то прочность бедренной кости должна быть пропорциональна площади ее поперечного сечения. Данное сечение, грубо говоря, представляет собой круг, а мы знаем, что площадь круга равна πr², где r – радиус круга. Таким образом, если d диаметр круга, площадь пропорциональна d².

Обозначим толщину бедренной кости буквой d (от слова диаметр). Тогда, следуя идее Галилео, масса млекопитающего будет пропорциональна d² (чтобы кости могли выдержать его вес), но она также пропорциональна l³ (это всегда так, независимо от идей Галилея). Стало быть, если идея Галилея верна, d² должно быть пропорционально l³, что равнозначно заявлению о том, что d пропорционально l³/2.

Если сравнить двух млекопитающих, одно из которых в пять раз больше другого (следовательно, длина l его бедренной кости примерно в пять раз больше), можно ожидать, что толщина d его бедренной кости будет приблизительно в 53/2 = 11 раз больше толщины бедренной кости меньшего животного. На своих лекциях я показываю, что длина l бедренной кости слона примерно в 100 раз больше длины бедренной кости мыши; следовательно, если идея Галилео верна, следует ожидать, что толщина d бедренной кости слона приблизительно в 1003/2 = 1000 раз больше кости мыши.

Таким образом, на определенном этапе роста и развития толщина бедренных костей очень тяжелых млекопитающих должна была бы сравняться с длиной этих костей – или даже стать больше ее, – что сделало бы, по сути, этих животных нежизнеспособными. Очевидно, именно по этой причине мудрая природа ввела максимальные ограничения на размеры млекопитающих.

Приложение II

Законы Ньютона в действии

Закон всемирного тяготения Ньютона можно записать следующим образом:

Глазами физика. От края радуги к границе времени - i_011.png

Fтяг – сила гравитационного притяжения между объектами с массой m1 и m2, а r – расстояние между ними. G – это так называемая гравитационная константа.

Законы Ньютона в принципе позволили нам вычислить по крайней мере массу Солнца и некоторых планет.

Давайте посмотрим, как это работает. Начну с Солнца. Допустим, m1 – масса Солнца, а m2 – масса планеты (любой). Предположим, что орбита планеты представляет собой окружность с радиусом r, а ее орбитальный период равен Т (Т составляет 365,25 дня для Земли, 88 дней для Меркурия и почти 12 лет для Юпитера).

Если орбита круговая или почти круговая (что характерно для пяти из шести планет, известных ученым в XVII веке), темп вращения планеты на орбите будет стабильным, но направление ее скорости постоянно меняется. Однако при изменении направления скорости любого объекта, даже без изменения ее величины, непременно имеет место ускорение, и, следовательно, согласно второму закону Ньютона, должна быть сила, обеспечивающая его.

Эту силу называют центростремительной (Fц), и она всегда направлена точно от движущейся планеты к Солнцу. Конечно, поскольку Ньютон был Ньютоном, он знал, как вычислить эту силу (я вывожу это уравнение на своих лекциях); ее величина такова:

Глазами физика. От края радуги к границе времени - i_012.png

Здесь v – скорость планеты на орбите. Но эта скорость равна окружности орбиты, 2πr, поделенной на время, T, требуемое для одного оборота вокруг Солнца. Таким образом, мы можем также записать:

Глазами физика. От края радуги к границе времени - i_013.png

Откуда же берется эта сила? Каково ее происхождение? Ньютон понял, что это должно быть гравитационное притяжение Солнца. Следовательно, две силы в приведенных выше уравнениях являются, по сути, одной и той же силой и друг другу равны:

Глазами физика. От края радуги к границе времени - i_014.png

Еще немного поиграв с перестановкой переменных (кстати, отличный шанс освежить школьные знания алгебры), получаем, что масса Солнца составляет:

Глазами физика. От края радуги к границе времени - i_015.png

Обратите внимание, что массы планеты (m2) в уравнении 5 больше нет; она не входит в эту модель. Следовательно, для расчетов нам достаточно знать среднее расстояние от планеты до Солнца и ее орбитальный период (Т). Ну разве не удивительно? В конце концов, m2 есть и в уравнении 1, и в уравнении 2. Но именно тот факт, что данная переменная присутствует в обоих уравнениях, и является причиной, по которой m2 исключается путем установления равенства между Fтяг и Fц. В этом красота данного метода, и всем этим мы обязаны сэру Исааку Ньютону!