После того как он поблек, ученые, судя по всему, забыли о его существовании вплоть до XVIII века, когда его независимо друг от друга обнаружили сразу два астронома, Джон Бивис и Шарль Мессье. К этому времени остатки вспышки сверхновой (астрономы называют их остатками сверхновой) превратились в небулярный (облакоподобный) объект. Позже Мессье составил важный астрономический каталог небесных тел, таких как кометы, туманности и звездные скопления, и Крабовидная туманность стала его первым пунктом, M-1. А в 1939 году Николас Мэйолл из Ликской обсерватории (в Северной Калифорнии) определил, что М-1 является остатком вспышки сверхновой в 1054 году. Сегодня, через тысячу лет после взрыва, в Крабовидной туманности продолжают происходить настолько потрясающие вещи, что некоторые астрономы посвящают ее изучению всю свою карьеру.

Группа Херба Фридмана определила, что 7 июля 1964 года Луна будет проходить прямо перед Крабовидной туманностью и перекроет ее в поле зрения. Астрономы используют для обозначения такого блокирования термин «покрытие» – Луна попросту заслоняет Крабовидную туманность. Фридман не только хотел подтвердить, что Крабовидная туманность действительно источник рентгеновского излучения, но и надеялся продемонстрировать кое-что еще – нечто куда более важное.

Дело в том, что к 1964 году среди астрономов возродился интерес к объектам звездной природы, существование которых было впервые постулировано в 1930-х, но пока никем не подтверждено, – к нейтронным звездам. Высказывалось предположение, что эти странные объекты, которые мы обсудим подробнее в главе 12, представляют собой один из заключительных этапов жизни звезды; возможно, они рождаются во время взрыва сверхновой и состоят в основном из нейтронов. Если они на самом деле существуют, то их плотность настолько велика, что нейтронная звезда с массой нашего Солнца будет иметь радиус всего около 10 километров – можете себе представить? В 1934 году (через два года после открытия нейтронов) Вальтер Бааде и Фриц Цвикки придумали термин «сверхновая» и предположили, что нейтронные звезды могут формироваться в результате вспышки сверхновой. Так вот, Фридман считал, что источником рентгеновского излучения в Крабовидной туманности может быть только такая нейтронная звезда. И если астроном был прав, то наблюдаемое им рентгеновское излучение должно было внезапно исчезнуть, когда перед ним будет проходить Луна.

Ученый решил запустить серию ракет, одну за другой, как раз в тот момент, когда Луна будет проходить перед Крабовидной туманностью. Поскольку точное положение Луны по мере ее передвижения по небу было уже известно, астрономы могли направить датчики точно в нужном направлении и наблюдать за ослаблением рентгеновского излучения по мере исчезновения Крабовидной туманности. Их детекторы действительно зарегистрировали ослабление, и это наблюдение стало первым убедительным оптическим опознаванием источника рентгеновского излучения (то есть его отождествлением с оптически наблюдаемым объектом). Это было чрезвычайно важное достижение, так как первая оптическая идентификация вселила в астрономов оптимизм, и они начали верить, что скоро найдут механизм, лежащий в основе этих загадочных и мощных рентгеновских источников.

Но сам Фридман был разочарован. Вместо того чтобы резко «отключиться», когда Луна проходила над Крабовидной туманностью, рентгеновские лучи исчезали постепенно, а значит, их излучала туманность в целом, а не какой-то единичный малый объект. Получалось, что ему не удалось найти нейтронную звезду. А между тем весьма особая нейтронная звезда в Крабовидной туманности есть, и она действительно испускает рентгеновские лучи. Эта нейтронная звезда вращается вокруг своей оси около тридцати раз за одну секунду! Если хотите получить истинное удовольствие, зайдите на сайт Космической рентгеновской обсерватории Чандра ( http://chandra.harvard.edu/ ) и найдите фотографии Крабовидной туманности. Обещаю, они в самом деле потрясающие. Но сорок пять лет назад у нас не было космических рентгеновских телескопов и приходилось быть более изобретательными. (После открытия Джоселин Белл в 1967 году радиопульсаров, то есть пульсаров, излучающих в радиодиапазоне, в 1968 году группа Фридмана наконец обнаружила рентгеновские пульсации – около тридцати в секунду – нейтронной звезды в Крабовидной туманности.)

Пока Фридман наблюдал покрытие Крабовидной туманности, в Техасе мой (тогда еще будущий) друг и коллега по МТИ Джордж Кларк готовился к ночному полету на высотном аэростате, чтобы найти высокоэнергетическое рентгеновское излучение от Sco X-1. Но когда Джордж услышал о результатах Фридмана – даже без интернета новости тогда распространялись довольно быстро, – он полностью изменил свои планы и переключился на дневной полет, решив найти рентгеновские лучи, исходящие из Крабовидной туманности и превышающие 15 кэВ. И он их нашел!

Сейчас трудно выразить словами, насколько захватывающей была эта работа. Мы стояли у дверей новой эры научных исследований. Мы чувствовали, что приподняли занавес, скрывавший от нас удивительные тайны Вселенной. И действительно, подняв свои детекторы так высоко, в космос, в самые верхние слои атмосферы, в которые рентгеновское излучение может проникать, не поглощаясь воздухом, мы смогли снять ослеплявшие нас фильтры, всю предыдущую историю человечества закрывавшие наши глаза. Мы начали оперировать в совершенно новом спектральном диапазоне.

Впрочем, такое в истории астрономии не редкость. Каждый раз, когда мы узнавали, что небесные тела испускают новые или иные виды излучений, нам приходится в корне менять свои представления о звездах, их жизненных циклах (как они рождаются, как живут, почему умирают), о формировании и эволюции скоплений звезд, о галактиках и даже о скоплениях галактик. Радиоастрономия, например, показала, что центры галактик способны извергать струи длиной в сотни тысяч световых лет. Она помогла отрыть пульсары, квазары и радиогалактики. Ей принадлежит заслуга открытия реликтового излучения, коренным образом изменившего наши взгляды на раннюю Вселенную. А астрономия в диапазоне гамма-излучений позволила обнаружить некоторые из наиболее мощных и (к счастью) далеких взрывов во Вселенной, известных как гамма-всплески, излучающих послесвечение в виде рентгеновских лучей и видимого света, вплоть до радиоволн.

Мы знали, что обнаружение рентгеновских лучей в космосе непременно изменит наше понимание Вселенной. Мы просто не представляли, как это сделать. Куда бы мы ни смотрели с помощью своего нового оборудования, мы видели что-то новое. И это, как мне кажется, вовсе не удивительно. Когда оптические астрономы начали получать первые изображения с космического телескопа «Хаббл», они тоже были взволнованы, испытывали благоговение и – хоть, может, не так очевидно – жаждали большего. Но они, по сути, лишь расширили диапазон возможностей многовекового инструмента в области исследований, существовавшей не первое тысячелетие. Мы же, рентгеновские астрономы, стояли на пороге совершенно нового научного направления. Кто знал, куда ведет эта дорога и что мы там обнаружим? Уж нам-то это точно было неизвестно!

Как же мне повезло, что Бруно Росси пригласил меня в МТИ именно в январе 1966 года, как раз тогда, когда эта новая область «становилась на крыло», и что я немедленно присоединился к группе Джорджа Кларка. Джордж оказался очень умным физиком и вообще весьма впечатляющим человеком, с которым я подружился на всю оставшуюся жизнь. Даже теперь мне с трудом верится в свое тогдашнее везение: новый друг и новая карьера – и все это я получил в один и тот же месяц.

11. Как мы начинали изучать рентгеновское излучение с помощью аэростатов

Когда я начал работать в Массачусетском технологическом институте, в мире существовало пять активных групп воздухоплавания группа Джорджа Кларка в МТИ, Кена Мак-Кракена в Университете Аделаиды в Австралии, Джима Овербекома тоже в МТИ, Ларри Петерсона в Калифорнийском университете в Сан-Диего и Боба Хеймса в Университете Райса. Эта глава в основном посвящена моему собственному опыту в области использования воздухоплавания для исследования рентгеновского излучения, которое было ключевой темой моих изысканий с 1966 по 1976 год. За эти годы я проводил наблюдения с территории Палестины в Техасе, Пейджа в Аризоне, Калгари в Канаде и Австралии.