Я опять отправился в Гарвард, где мне показали еще три кости: антилопы, опоссума и мыши. Вот как они выглядели (плюс кость лошади):

Глазами физика. От края радуги к границе времени - i_001.png

Ну разве это не прекрасно? Форма костей изменяется на удивление пропорционально; вы только поглядите, какая тоненькая и крошечная бедренная кость мыши! Малюсенькая и тонюсенькая бедренная косточка для малюсенькой мышки. Разве это не замечательно? Никогда не перестану поражаться красоте каждой детали матушки-природы.

Но как насчет результатов измерений, как они вписываются в мое уравнение? Произведенные расчеты повергли меня в шок, настоящий шок. Бедренная кость лошади оказалась примерно в 40 раз длиннее кости мыши и, согласно моим расчетам, в этом случае должна была быть более чем в 250 раз толще. А она была толще всего примерно в 70 раз.

И тут меня осенило: «А почему бы не попросить у них бедренную кость слона? Это помогло бы окончательно решить вопрос». Думаю, ребята в Гарварде были несколько раздражены, когда я явился к ним снова, но все же любезно выдали мне бедренную кость слона. К тому времени, я уверен, они просто хотели поскорее от меня избавиться! Поверьте, кость слона было очень трудно нести; она была длиннющая и, похоже, весила целую тонну. Я не мог дождаться момента, когда ее измерю, и не спал всю ночь.

И знаете, что я обнаружил? Бедренная кость мыши была 1,1 ± 0,05 см в длину и всего 0,7 ± 0,1 мм толщиной – действительно очень тонкая. Длина бедренной кости слона составляла 101 ± 1 см, то есть приблизительно в 100 раз длиннее кости мыши. А как насчет толщины? Измерив кость слона, я получил толщину 86 ± 4 мм, то есть примерно в 120 раз больше диаметра бедренной кости мыши. Однако, по моим расчетам, если Галилей прав, то бедренная кость слона должна была быть где-то в тысячу раз толще, чем у мыши. Иными словами, ее толщина должна составлять около 70 сантиметров. А на самом деле ее диаметр был где-то 9 сантиметров. В итоге мне пришлось признать, хоть и с крайней неохотой, что великий Галилео Галилей ошибался!

Измерение межзвездного пространства

Одной из областей физики, для которой измерения стали истинным проклятием, является астрономия. Измерения и их погрешность – огромная проблема для астрономов, в частности потому, что дело приходится иметь с мегарасстояниями. Как далеко находятся звезды от Земли? Ну, например, наша прекрасная соседка Андромеда? А как насчет галактик, которые мы можем видеть только в самые мощные телескопы? Насколько далеки от нас наиболее удаленные объекты в космосе, которые мы видим? Насколько вообще велика наша Вселенная?

Это лишь некоторые из самых фундаментальных и глубоких вопросов всего естествознания. И разные ответы на них буквально перевернули наше представление о Вселенной с ног на голову. В сущности, у такого дела, как оценка астрономических расстояний, вообще замечательная история. Через изменения в методиках расчета расстояний до звезд можно проследить эволюцию самой астрономии. И на каждом этапе полученные данные зависят от степени точности измерений, то есть используемого оборудования и изобретательности астрономов. Например, вплоть до конца XIX века единственными данными, с помощью которых астрономы могли производить расчеты, был так называемый параллакс.

Вы все сталкивались с этим явлением, хотя чаще всего и не знали об этом. Где бы вы сейчас ни сидели, оглянитесь вокруг и найдите участок стены с каким-то элементом: дверным проемом или висящей картиной. А если вы находитесь на улице, то какой-нибудь заметный элемент ландшафта, например большое дерево. Теперь вытяните прямо перед собой руку и поднимите один из пальцев так, чтобы он оказался с той или другой стороны от выбранного вами объекта. Теперь зажмурьте сначала правый глаз, а затем левый. Вы увидите, как ваш палец перепрыгнет слева направо по отношению к дверному проему или дереву. Теперь переместите палец ближе к глазам и проделайте все снова. Ваш палец сместится еще сильнее. Эффект огромен! Это и есть параллакс.

Все происходит из-за смены ракурса при наблюдении за объектом, в данном случае из-за перехода с линии зрения левого глаза на линию зрения правого (глаза человека расположены примерно в 6,5 сантиметра друг от друга).

Это и есть ключевая идея, лежащая в основе определения расстояний до звезд, только вместо 6,5 сантиметра, разделяющих наши глаза, в качестве базовой линии используется диаметр орбиты Земли (около 300 миллионов километров). По мере того как Земля обращается вокруг Солнца (по орбите с диаметром около 300 миллионов километров) в течение года, близлежащая звезда будет смещаться в небе относительно более удаленных звезд. Мы же раз в полгода измеряем угол в небе (угол параллакса) между двумя положениями этой звезды. Если произвести многократные измерения с полугодовым интервалом, получатся разные углы параллакса. На приведенном ниже рисунке я ради простоты примера выбрал звезду в плоскости орбиты Земли (так называемой орбитальной плоскости, или плоскости эклиптики), но описанный здесь принцип параллакса применим для любой звезды, а не только для звезд в плоскости эклиптики.

Глазами физика. От края радуги к границе времени - i_002.png

Предположим, вы наблюдаете звезду А в момент, когда Земля, двигаясь по орбите вокруг Солнца (С), находится в положении 1. В этом случае вы видите звезду проецируемой на фон (очень удаленный) в направлении A1. Если же вы наблюдаете ту же звезду шесть месяцев спустя (с позиции 7), то увидите ее в направлении A7. Угол, обозначенный как α, наибольший из всех возможных углов параллакса. Если произвести аналогичные замеры с позиций 2 и 8, 3 и 9, 4 и 10, углы параллакса всегда будут меньше, чем α. В гипотетическом варианте наблюдений из пунктов 4 и 10 (гипотетическом, потому что с позиции 10 звезду наблюдать невозможно, ибо мешает Солнце) угол параллакса вообще был бы равен нулю. А теперь посмотрите на треугольник, образуемый точками 1А7. Мы знаем, что расстояние 1–7 составляет 300 миллионов километров; нам также известно, что угол равен α. Следовательно, теперь можно без труда рассчитать расстояние CA (математика уровня средней школы).

Несмотря на то что углы параллакса, измеренные в разные полугодовые периоды, отличаются друг от друга, астрономы говорят о конкретном параллаксе звезды, под которым подразумевают величину, равную половине самого большого угла параллакса. Так, если максимальный угол параллакса составляет 2,00 угловые секунды, то параллакс звезды будет равен 1,00 угловой секунде, а расстояние до нее в этом случае составит 3,26 световых года (хотя на самом деле звезд, столь близких к Земле, не существует). Чем меньше параллакс, тем больше расстояние. Если параллакс равен 0,10 угловой секунды, расстояние до нее будет 32,6 световых года. Самая близкая к Солнцу звезда – Проксима Центавра. Ее параллакс – 0,76 угловой секунды; таким образом, от Земли ее отделяет около 4,3 световых года.

Чтобы лучше понять, насколько малые изменения в положениях звезд приходится измерять астрономам, для начала следует разобраться, что же представляет собой угловая секунда. Представьте себе огромный круг, нарисованный в ночном небе через зенит (направление, указывающее непосредственно вверх) вокруг Земли. Поскольку это круг, то в нем, естественно, 360 градусов. Так вот, каждый градус делится на 60 угловых минут, а каждая угловая минута, в свою очередь, – на 60 угловых секунд. Таким образом, в полном круге 1 296 000 угловых секунд. Как видите, угловая секунда – величина крайне маленькая.

Вот еще один способ наглядно представить себе, насколько она мала. Если взять монету в десять центов и поместить ее примерно на расстоянии 3,5 километра от вас, то ее диаметр будет составлять одну угловую секунду. Или еще. Каждый астроном знает, что диаметр Луны равен около половины градуса, или 30 угловых минут. Это называется угловым размером Луны. Так вот, если бы вы умудрились нарезать Луну на 1800 одинаково тонких ломтиков, ширина каждого из них равнялась бы одной угловой секунде.